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ABSTRACT

Knee osteoarthritis is one of the most debilitating aging diseases as it causes loss

of cartilage of the knee joint. Knee osteoarthritis affects the quality of life and in-

creases the burden on health care costs. With no disease-modifying osteoarthritis

drug currently available there is an immediate need to understand the factors trigger-

ing the onset and progression of the disease. Developing robust segmentation tech-

niques and quantitative analysis helps identify potential imaging-based biomarkers

that indicate the onset and progression of osteoarthritis. This thesis work developed

layered optimal graph image segmentation of multiple objects and surfaces (LOGIS-

MOS) framework based knee MRI segmentation algorithms in 3D and longitudinal

3D (4D). A hierarchical random forest classifier algorithm was developed to improve

cartilage costs functions for the LOGISMOS framework. The new cost function de-

sign significantly improved the segmentation accuracy over the existing state of the

art methods. Disease progression results in more artifacts appearing similar to carti-

lage in MRI. 4D LOGISMOS segmentation was developed to simultaneously segment

multiple time-points of a single patient by incorporating information from earlier time

points with a relatively healthier knee in the early stage of the disease. Our exper-

iments showed consistently higher segmentation accuracy across all the time-points

over 3D LOGISMOS segmentation of each time-point. Fully automated segmentation

algorithms proposed are not 100 % accurate especially for patient MRI’s having se-

vere osteoarthritis and require interactive correction. An interactive technique called

just-enough interaction (JEI) was developed which added a fast correction step to the

automated LOGISMOS, speeding up the interactions substantially over the current

slice-by-slice manual editing while maintaining high accuracy. JEI editing modifies

the graph nodes instead of the boundary surfaces of the bones and cartilages provid-

ing globally optimally corrected results. 3D JEI was extended to 4D JEI allowing

for simultaneous visualization and interaction of multiple time points of the same
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patients.

Further quantitative analysis tools were developed to study the thickness losses.

Nomenclature compliant sub-plate detection algorithm was developed to quantify

thickness in the smaller load bearing regions of the knee to help understand the

varying rates of thickness losses in the different regions. Regression models were de-

veloped to predict the thickness accuracy on a patient MRI at a later follow-up using

the available thickness information from the LOGISMOS segmentation of the cur-

rent set of MRI scans of the patient. Further non-cartilage based imaging biomarker

quantification was developed to analyze bone shape changes between progressing and

non-progressing osteoarthritic populations. The algorithm quantified statistically sig-

nificant local shape changes between the two populations. Overall this work improved

the state of the art in the segmentation of the bones and cartilage of the femur and

tibia. Interactive 3D and 4D JEI were developed allowing for fast corrections of the

segmentations and thus significantly improving the accuracy while performing many

times faster. Further, the quantitative analysis tools developed robustly analyzed the

segmentation providing measurable metrics of osteoarthritis progression.
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PUBLIC ABSTRACT

Knee osteoarthritis is one of the most debilitating aging diseases as it causes loss

of cartilage of the knee joint with nearly 30.8 million adults affected in the US be-

tween 2008-2011. Further the disease is expected to affect nearly 78 million people

in the US by 2040. Knee osteoarthritis affects the quality of life and increases the

burden on health care costs. With no disease-modifying osteoarthritis drug currently

available there is an immediate need to understand the factors triggering the onset

and progression of the disease. Developing robust segmentation techniques and quan-

titative analysis helps identify potential biomarkers causing the initial onset of the

disease and its progression.

This thesis work developed state of the art graph based knee MRI segmentation

algorithms in 3D. The work also developed the world’s first longitudinal 3D (4D)

graph based segmentation algorithm which simultaneously segmented multiple follow-

up visits of the patient. This technique was demonstrated to be highly beneficial in

tackling the hard to segment follow-up MRI’s with severe disease by using information

from healthy MRI scans taken from earlier visits. Machine learning algorithms were

used to improve the accuracy of the segmentation task further. The limitation of any

fully automated technique is that they are not 100% accurate every single time. An

interactive technique called just-enough interaction (JEI) was developed which added

a fast correction step to the automated method, providing fast interactive correction

while maintaining high accuracy.

To quantify osteoarthritis, several automated tools were developed to study the

thickness losses using the segmented bones and cartilages of the knee joint. Algo-

rithms were developed to quantify thickness losses in the smaller load bearing regions

of the knee joint which are the most affected by osteoarthritis. Regression models were

designed to predict the thickness accuracy on a patient MRI at a later follow-up us-

ing the available thickness information of the current set of MRI scans of the patient.
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Further bone shape changes were studied to understand differences between progress-

ing and non-progressing osteoarthritic populations. Overall this work improved the

state of the art in the segmentation of the bones and cartilage of the femur and

tibia. Interactive 3D and 4D JEI were developed allowing for fast corrections of the

segmentations and thus significantly improving the accuracy while performing many

times faster. Further, the quantitative analysis tools developed robustly analyzed the

segmentation providing measurable metrics of osteoarthritis progression.
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1

CHAPTER 1
INTRODUCTION

1.1 Anatomy of The Knee Joint

The knee is one of the most complex joints in the human body. It is made up

of the thigh bone (femur), shin bone (tibia), the knee cap (patella) and a smaller

bone running alongside the tibia (fibula), (Fig. 1.1). Soft connective tissues such as

tendons connect the knee bones to the muscles in the leg which help in movement.

Articular cartilage is found covering the ends of the femur, tibia and the patella bone

in the regions where they come in contact with each other. They are adapted to resist

and dampen the compressive and tensile forces which occur during the movement of

the knee joint. There are four ligaments in the knee joint responsible for providing

stability to the knee: 1. Anterior cruciate ligament that prevents the femur from

sliding backward on the tibia, 2. Posterior cruciate ligament which prevents the femur

from sliding forward on the tibia and 3. Medial and Lateral collateral ligaments that

protect the femur from sliding side to side. In order to provide a smooth contact

surface between the femur and tibia cartilage two C-shaped pieces of cartilage called

medial and lateral menisci occur in between the femur and tibia. These cartilages

along with the fluid-filled sacs help in the smooth movement of the knee joint.

1.2 Significance of Osteoarthritis as a Disease

Osteoarthritis (OA) is a disease which causes loss of articular cartilage in the joints

over time. OA of the knee is one of the leading causes of functional disability among

the aging. Estimates project that the disease prevalence will double by 2020 [1]. The

disability risk attributed to knee OA is greater than that caused by any other medical

conditions amongst the aging population [23].

Currently, there are no drugs that can halt the progress of OA let alone reverse the

degradation. The only treatments available are therapeutic which helps to manage

the progressively worsening pain using oral pain medications, intravenous steroid
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Figure 1.1: The anatomy of the knee. Source: WebMD

injections, and/or weight management. Other methods to alleviate pain includes

wearing support braces which help ease the pressure in the joint where there is no

cartilage. The placebo effect can also be a power tool for therapeutic relief. The sham

surgery reported by Moseley et al. [44] is a famous example of the placebo effect.

The patients were divided into three groups out of which two of them received actual

arthroscopic lavage (Group 1) and arthroscopic débridement1 (Group 2). The placebo

group (Group 3) only had similar incisions and underwent a simulated débridement

without arthroscope insertion. It turned out that at no point after the surgery did

the outcome of the control groups (Groups 1 & 2) show greater improvement than

the placebo group in terms of pain reduction and improved functionality.

Upon onset of OA, patient’s knee joint gradually worsens loosing functionality

and causing increasing pain. Eventually, the loss of cartilage will completely denude

the joint causing bone-on-bone interaction which can be extremely painful. Further

research has shown that the loss of cartilage accelerates towards the end of the disease

1The trimming and removal of loose debris of osteophytes, extruded meniscus, synovium or
cruciate ligament .
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[17] leading to complete loss of joint functionality and eventually forcing the patients

to undergo total knee replacement (TKR). Therefore it is crucial to understand what

triggers the onset of OA.

1.3 Role of Imaging in Knee Osteoarthritis

Several large-scale clinical studies for developing a Disease Modifying Osteoarthri-

tis Drug (DMOAD) are underway. Imaging is crucial in these studies to determine

the effect of such drugs on disease progression. For DMOAD, the guidelines recom-

mend that the benefits of reduction of joint tissue pathology should be accompanied

with clinical outcome benefits, i.e., reduction of joint pain and improvement of func-

tion [18]. Therefore it is especially important to study the relationship between

imaging biomarkers and clinical outcomes. The two most commonly used techniques

to image the knees are radiographs and Magnetic Resonance Imaging (MRI).

Radiography is an inexpensive and simple technique which can be used to detect

OA associated features such as osteophytes and subchondral cysts. Commonly the

knee is imaged in its weight bearing, anteroposterior (AP) view, fixed-flexion radiog-

raphy with 100 caudal beam angle on both the knee joints [35,36]. In order to obtain

reproducible radiographs, a specially designed frame by SynaFlexer is used that helps

standardize the positioning of the knee during imaging. An indirect measure of the

cartilage thickness and meniscal positioning can be obtained by determining the joint

space width (JSW). The JSW calculation from a projection of a 3D object onto a

2D plane has several limitations with studies showing that the lack of sensitivity

and specificity of radiographs in detecting OA associated features and changes in the

follow-up radiographs inherently limiting their use [26].

MRI has several advantages over radiographs. Unlike radiographs which project

a volume onto a 2D plane, MRI can obtain detailed 3D images of the full knee joint

and can be used to analyze more accurate quantitative indices. MRI can directly

visualize different components of the knee besides articular cartilage such as liga-
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ments, synovial fluid, meniscus, bone marrow lesions (BML’s) and cysts. Studies

have shown that quantitative measurements from MRI are more sensitive to carti-

lage losses than qualitative methods [57]. In [53] the study showed an increased risk

of radiographic OA from examining the structural damage on patient MRI from 2

years prior. Different measurements on MRI can be enhanced further by using the

appropriate pulse sequences. Therefore good pulse sequence designs are essential

for good quality images of the specific tissue to be studied. Several sequences have

been developed to study the physiological content of articular cartilage. The onset

of OA reduces the collagen and proteoglycan content thereby disrupting the collagen

network. As a result, the water content increases and further matrix degradation

occurs [13]. Transverse mapping (T2) is shown to be useful in analyzing cartilage

composition with its spatial distribution linked with OA severity [15]. T1ρ imaging

was found to be sensitive to collagen and correlated with the proteoglycan concentra-

tions in the cartilage. T1ρ mapping was also found to have increased values in knee

cartilage with OA in comparison with normal cartilage [52].

Contrast based techniques such as delayed Gadolinium-enhanced MRI (dGEM-

RIC) use a negatively charged contrast agent such as Gd(DTPA) (Magnevist; Berlex-

Imaging, Wayne, NJ, USA) which is injected intravenously and imaged after around

90 minutes. This contrast agent accumulates in low concentration in areas rich in

negatively charged glycosaminoglycan (GAG) found in abundance in healthy car-

tilage. Whereas there is high accumulation in regions lacking GAG. Imaging this

gives us a dGEMRIC index distribution where low index indicates high Gd(DTPA)

accumulation and therefore greater GAG depletion indicating damaged cartilage [41].

Gradient-recalled echo (GRE) based sequences such as 3D spoiled gradient echo

at steady state (SPGR), fast low-angle shot (FLASH) and double echo steady state

(DESS) provide excellent cartilage to subchondral bone contrast and nearly isotropic

spatial resolution which helps to accurately measure changes in the bone and the
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cartilage structures. They are most commonly used in research for providing detailed

quantitative analysis of several structures. Over longitudinal studies, these sequences

can visualize the loss of thickness in cartilage and the growth of several pathologies

and lesions with worsening of the disease. Overall they provide a comprehensive view

of the structure of the bones and cartilages changes in the knee joint along with the

other pathologies that are found to be useful indicators.

1.4 Quantitative and Semi-quantitative Imaging Biomarkers

For an imaging biomarker to be considered useful it should lie on the disease

pathway, i.e., the biomarker should detect changes in the disease progression and

report them with sufficient accuracy and precision. OA is measured either quanti-

tatively or as semi-quantitative grading schemes in radiographs. Quantitative JSW

measurements are done either manually or semi-automatically/automatically using

software.

The most popular semi-quantitative measure is the Kellgren and Lawrence (KL)

[32] classification system. The presence of osteophytes and progression of the joint

space narrowing (JSN) are the main criteria used to assess the progression of OA.

Lack of JSW indicated by bone to bone interaction is an indicator for TKR. Image

repositories of radiographs of different disease states are used as references to assigning

KL grades. These grades range from 0 to 4 with 0 indicating a healthy knee and 4

indicating a severely diseased knee. A KL grade of 0 indicates a healthy knee with

no evidence of OA. Some possible JSN and presence of osteophytes are assigned a

KL grade of 1. KL grade of 2 is assigned to radiographs with definite osteophytes

and possible JSN in the weight bearing regions. As the disease progresses multiple

osteophytes and bone deformations with definite JSN and sclerosis can be seen in KL

grade of 3. Finally, KL grade of 4 indicates the presence of significant JSN, severe

bone deformities, and sclerosis. The KL grading scheme has several limitations. For

example KL grade of 3 can include all different degrees of JSN irrespective of the
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actual extent [18]. More recently, the Osteoarthritis Research Society International

(OARSI) atlas was developed which is graded based on individual compartments

of the knee. The grades are based on the extent of osteophytes and JSW in the

tibiofemoral regions of each compartment. This method has been shown to be more

sensitive to longitudinal changes than KL grading [3].

Several semi-quantitative scoring systems exist for scoring MRI’s [61]. They all

primarily grade the focal losses of cartilage on a five-point scale. More recently in-

troduced scores provide a more complex analysis of the cartilage and also scoring

other tissues involved in OA such as bone marrow, and meniscus. The two most

commonly used ones are whole-organ magnetic resonance imaging score (WORMS)

and Boston-Leeds Osteoarthritis Knee score (BLOKS). The real advantage of quan-

titative measurements over semi-quantitative scoring methods is that they are less

prone to observer biases. They are more objective and relatively small changes in the

cartilage thickness or volume can be detected longitudinally [19].

As mentioned in the earlier section, GRE based sequences such as DESS/FLASH

are very good in providing quantitative analysis. Common quantitative measures

computed are thickness, the total area of the subchondral bone, cartilage area, thick-

ness over the total area of the bone. A consensus compliant nomenclature for subplate

definitions and structural features were defined by experts [16]. For each sub-region

defined the above-mentioned quantitative indices were computed. In order to com-

pute these accurate segmentation needs to be performed either manually or using

automated/semi-automated algorithms.

The potential link between cartilage morphology as a surrogate measure of disease

progression and clinical outcomes (such as TKR) have been studied. In [11], a four-

year study conducted found out that the rate of change in cartilage volume from

baseline (BL) to 2 years was an independent predictor of TKR at 4 years. Further,

the study concluded that for every 1% increase in the cartilage loss rate, the risk
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factor for undergoing TKR increased to 20%. In contrast, the radiographic scores of

OA did not predict TKR in the same study. In [17], a 4-year trajectory of femorotibial

cartilage thickness loss was examined in a case-control study. The study found that

in cases with subsequent knee replacement the losses were found to accelerate 2 years

prior to surgery. The most responsive sub-region were found to be the central medial

tibia (cMT) in terms of identifying the accelerated losses in patients with TKR.

Several similar such studies have shown sensitivity to change of cartilage thickness

and volume loss. Studies report factors which accelerate the loss of cartilage seen

useful for enriching clinical trials have been reported. These include misalignment

(varus/valgus), advanced KL grade at BL, pain, and high body mass index (BMI).

In [9], it was reported that patients with early radiographic OA displayed thickening

of the peripheral sub-regions.

Besides the cartilage, other structures such as bone and meniscus have been stud-

ied. Bone shape vector has been shown to be a promising marker which indicates

changes in the structure early [45]. In the study, they concluded that bone shape

vector is an important biomarker which could detect changes 12 months before the

incident change in Kellgren - Lawrance (KL) grade (KL ≥ 2). OA knees were found to

have a larger increase in bone area longitudinally than those without OA [6]. Denuded

area of subchondral bone (dAB) has been associated with knee pain [43]. Meniscus

extrusion was able to predict progression but was suggestive of a lack of increase in

sensitivity to change [51].

Trochlear dysplasia has been identified as a potential non-cartilage biomarker of

OA, characterized by the abnormal shape and depth of the trochlear groove. The

work by Pfirrmann et al. [50] was the first attempt in a MR-based identification of

the trochlear dysplasia. Jungmann et al. [29] found that shallow trochlear depth

was associated with reduced T2 relaxation times and lowered cartilage volume in

comparison with the healthy controls. In both studies, the trochlear groove was
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manually segmented in 2D and abnormalities were identified based on thresholding of

a 1D depth measurement. Pedoia et al. semi-automatically segmented the femur and

tibia to create statistical shape models and reported a reduction of surface area around

the trochlear groove region [48]. In [45], the authors used an active shape model to

automatically segment the femoral bones and used a linear discriminant analysis

classifier to distinguish between healthy and OA knees and reported a narrowing of

the trochlear groove. All the above methods quantify either individual 2D slices or

report high-level shape changes for the entire structure.

All these studies point towards the importance of quantitative indices as biomark-

ers in the study of OA highlighting the promises and pitfalls of current biomarkers and

the need to identify novel biomarkers to aid the understanding of disease progression,

especially in intervention drug trials.

1.5 Background of Automated Segmentation Techniques used in

Analyzing Knee MRI

Several of the quantitative indices mentioned in the previous section requires ac-

curate segmentation of the knee as the first step. Segmentation is performed either

manually by the reader or using semi-automated/automated algorithms. Here we fo-

cus on a survey of existing automated algorithms available in the literature. A survey

of semi-automated algorithms is presented in the next section.

Automated segmentation of knee MRI allows more objective and more efficient

quantification of cartilage than manual segmentation by trained radiologists, which

can take several hours of effort and is prone to inter/intraobserver variability and

operator-induced biases. However, the complex anatomy of the knee joint, the chal-

lenges from the MR appearance of the cartilage make fully automated segmentation

a challenging task. In particular, the closely positioned cartilage and bone surfaces

at the interface of the femur and tibia are highly difficult to distinguish from each

other. As a result, methods segmenting the bones and cartilages of the femur and
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tibia objects without considering the contextual information between them frequently

fail.

Several segmentation algorithms have been previously proposed for this task. Ap-

proximate binary k-NN classifiers was proposed by Folkesson et al. [20]. To correct

for variations in placement of test subjects in the scanner a corrective position adjust-

ment was applied iteratively. They validated their algorithm on both healthy and OA

knees acquired on low field scanners. Dodin et al. proposed using a ray casting tech-

nique to segment the bones of the femur and tibia [14]. They formulated the problem

by decomposing the MR images into multi-surface layers localizing the boundaries of

bones and several partial segmentation objects which are merged to obtain the final

complete bone segmentation. In [22], a fully automated segmentation method was

proposed for non-pathological knees. A 3D active shape model was used as initializa-

tion to extract the bone-cartilage interface; the cartilage was then segmented using a

deformable model with patient-specific tissue estimation. Markov random fields were

used to construct and optimize local image patches for region and boundary proba-

bilities from local shape and appearance information in [39]. Lee et al. demonstrated

a fully automated segmentation of 3D MR images using a multi-atlas model and lo-

cal structural scheme [38]. Their methodology built a multi-label atlas which was

merged using a locally weighted voting followed by region adjustment. A hierarchical

two-stage random forest classifier system was used for cartilage classification in [66].

The algorithm used multi-label graph cuts to optimize the background (combining

bone regions with the true background as a single label) and the cartilage classifier

outputs.

The surveyed segmentation techniques make use of locally optimal strategies to

solve the segmentation leading to sub-optimal solutions especially for pathological

cases. For example, Wang et al. [66] used multi-label graph cuts to optimize the

background combining bone regions with true background and the cartilage classifier
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outputs. The proposed framework in this thesis guarantees globally optimal solutions

with respect to the cost functions provided. Our work also focuses on designing highly

accurate machine learning based costs functions to further improve the segmentation

accuracy.

1.6 Interactive Segmentation Techniques

State-of-the-art automated segmentation algorithms are not 100% accurate, es-

pecially when segmenting difficult to interpret datasets like those with severe os-

teoarthritis (OA). With disease progression, automated algorithms face a challenging

problem of delineating the bones and cartilages in presence of bone marrow lesions,

cartilage surface thinning, meniscal extrusion and synovial fluid leakage. Many of

these artifacts are symptoms of the disease and appear similar in texture and inten-

sity to the cartilage on MR volumes. Therefore interactive correction methods are

designed to help ease the post-processing needed.

Several such techniques have been proposed in the literature. Ross et al. [54]

demonstrated an interactive segmentation of the pulmonary fissure surface from user

inputted seeds and thin plate spline interpolation. Mortensen et al. [4] demonstrated

the 2D live-wire based interaction by placing user inputted control points to denote

the object border that was solved using the graph optimization. In [55], the live-wires

were extended to 3D by using 2D live wires on a few slices to generate the contours

and using prior shape knowledge to interpolate for the remaining slices. Live-wires

have embedded user interactions that require a seed based initialization which is user

inputted or based on some initialization algorithm. However, they are inherently 2D

mechanisms which were later extended to 3D with a drawback of being unable to

maintain global optimality for multiple surfaces and objects. Schwarz et al. [56] used

an active shape model for interactive editing by utilizing the user inputs to mark

the expected boundary location. This was corrected by determining the new surface

points near the clicked points followed by the shape model updating. In Boykov’s
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graph cuts [7] the user marked the approximate foreground and background regions

of the image which were used to construct the appropriate cost functions for the under-

lying graph. The graph was solved using a max-flow optimization algorithm. Several

of the above-mentioned methods correct for segmentation inaccuracies by directly

matching the object boundaries with the interaction which after several repetitions

results in the final surfaces having local topological errors.

1.7 Problem Statement and Thesis Aims

The thesis aims can be divided into the following main categories :

• Aim 1: Improve and validate a LOGISMOS based method for fully automated

segmentation of knee-joint bones and cartilages in 3D MRI

• Aim 2: Develop and validate a 4D LOGISMOS method utilizing temporal con-

textual information to improve the segmentation accuracy in longitudinal stud-

ies.

• Aim 3: Develop just-enough-interaction (JEI) approaches to refine 3D and 4D

segmentations of the knee.

• Aim 4: Develop automated tools to better quantify changes in the bone and

cartilage due to osteoarthritis.

The rest of the thesis is organized as follows: Chapter 2 introduces the basic

graph search and the LOGISMOS segmentation pipeline for knee MRI. We describe

the gradient based costs and the learning based hierarchical cost function designed

for knee MRI. Chapter 3 introduces the automated sub-plate thickness detection

algorithm to quantify changes in cartilage thickness in the load bearing regions of

the knee. In Chapter 4 we extend the 3D LOGISMOS graph algorithm to handle

multiple time points of the same patient detailing the non-trivial graph extension to

incorporate the inter-time point constraints. Chapter 5 introduces the just-enough
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interaction (JEI) techniques that were extended to handle knee MRI detailing the

3D as well as the 4D JEI algorithms. Chapter 6 uses the segmentations to develop

different automated quantitative analyses demonstrating the powerful capabilities of

the different methods in understanding the changes to bone and cartilage due to

osteoarthritis. Finally, we provide a summary of the contributions, limitations of the

algorithms from this thesis and a glimpse of possible future directions this research

can be directed towards.
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CHAPTER 2
3D LOGISMOS ALGORITHM FOR KNEE MRI AND COST

FUNCTION DESIGN

2.1 Motivation

Several of the surveyed segmentation algorithms make use of local optimization

methods to solve the segmentation problem which can give sub-optimal solutions

especially in challenging to segment disease cases. The LOGISMOS framework based

knee MRI segmentation guarantees globally optimal solution with respect to the cost

functions provided. This framework was developed in [30] and extended to segment

multiple objects and surfaces simultaneously [70].

2.2 Basics of the knee segmentation algorithm

The LOGISMOS algorithm models the n-D simultaneous detection of multiple

interrelated objects and surfaces as a (n + 1)-D geometric graph with the surface

interrelations modeled as graph arcs between the desired surfaces. The combinatorial

optimization problem is solved by computing the minimum s-t cut on an appropriately

transformed geometric graph as described in previous works [30,70].

In the following paragraphs, detailed explanations of each of the steps in the

LOGISMOS algorithm pipeline are provided.

1. Pre-segmentation & Mesh Generation:

Pre-segmentation yields approximate mesh surfaces of the target objects. The

approximate surface detection is done using various methods such as Active

Shape Model (ASM), level-sets, atlas-based registration [60] and single-surface

graph segmentation. Generally, if the geometry is simple (terrain like, spherical

or cylindrical) the first step is a trivial task of fitting corresponding simple

shapes.

For the LOGISMOS applied to knee MRI, the pre-segmentation consists of

three main steps : volume of interest (VOI) detection, affine fitting of a mean
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shape model followed by a single surface graph segmentation of the bone. VOI

detection reduces the computation by isolating volumes to include the femur

and tibia bone and corresponding articular cartilages. The VOI detection is

done using an AdaBoost classifier [21] trained on manually isolated VOI’s. Nine

different Haar-like features at different scale responses are applied on the input

volume converted to an integral image. The difference in the pattern based on

the subtraction and addition of the areas under the filter were used as features

to train the AdaBoost classifier and to isolate VOI on the test MRI volume.

Mean shape meshes S̄0 were created from an earlier training set for the femur

and tibia shapes respectively. Using the VOI bounds, S̄0 were fitted using an

affine transform. Ensuring well-defined bone structure is important for the fi-

nal simultaneous LOGISMOS segmentation of bones and cartilages of the knee

joint. Therefore after fitting S̄0, single surface LOGISMOS segmentation is per-

formed independently for the bones of the femur and tibia producing accurate

patient-specific meshes S (Fig. 2.1). The graph column construction is similar

to the multi-surface multi-object version explained below.

2. Image Re-sampling for Graph Column Construction: The graph column

construction is an important step in mesh based graph optimization. Graph

columns drawn as simple normals to the mesh surface results in more than one

surface intersection per graph column. This violates the graph search constraint

of exactly one intersection per graph column. We instead borrow the idea

from electric field theory that multiple charged particles exhibit non-intersecting

electric lines of force. We mimic this behavior by simulating mesh surface points

as holding like charges. Using Coulomb’s law the graph columns constructed

follow the electric lines of force growing outwards from a charged body and

therefore do not intersect.
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Figure 2.1: 2D representative slice view of the pre-segmentation of the knee. Left,
the VOI extraction for the femur (red) and tibia (green). Top row, Affine fitted mean
shapes S̄0. Bottom row, accurate patient-specific bone structure S resulting from a
single-surface LOGISMOS segmentation.

Since the ELF computation is done on a discrete mesh we modify it as follows:

(a) To cope with the non-uniform vertex distribution on the mesh, each vertex

(vi) on the mesh surface is assigned a positive charge computed as the sum

of associated surface areas with the triangles tj that are adjacent to vi.

(b) The radius in the denominator follows the inverse square law. In order to

reduce the influence of mesh points further away from the point of interest,

the radius is modified from r2 to rm (m > 2) which decreases the influence

of more distant vertices and increases robustness.

This results in the following formulation of the ELF field:

Ê =
∑
i

∑
j AREA(tj)

rim
r̂i , (2.1)

where vi ∈ tj and m > 2.

3. Graph Search Setup and Segmentation An important innovation of the
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method is the non-trivial graph construction which transforms the surface seg-

mentation problem into a combinatorial optimization of computing the mini-

mum closed set in a node-weighted digraph. A closed set in the digraph Z is a

subset of nodes such that all the outgoing arcs from any of the nodes in Z are

also contained with it. The total cost of the closed set is the sum of the costs of

all the nodes belonging to the set. The optimization searches for the closed set

that has the minimum cost by computing the s–t cut in a derived arc-weighted

digraph [25] in polynomial time.

Here we first explain the construction of the graph for a single surface (used for

presegmentation) with the basic graph constraints to find a feasible surface.

(a) Single Surface Graph Segmentation: A node weighted digraph G =

(V,E) is built with each ELF vector corresponding to the nodes in a single

graph column. Every node (vi(k) ∈ V ) per column i with k ∈ K nodes/-

column represents a single re-sampled voxel in the image (I(x, y, z)) with a

corresponding cost w(x, y, z) associated to it where x ∈ x = {0, . . . , X−1},

y ∈ y = {0, . . . , Y − 1} and z ∈ z = {0, . . . , Z − 1} are the VOI bounds.

The node costs can encode both region-based and edge-based costs. They

represent the inverse likelihood that the desired surface contains the voxel.

Neighborhood relations between voxels are represented by defining the ad-

jacency relations among the columns of G. Every column on the graph

intersects the sought after surface with exactly one node. To ensure that

the surface is considered feasible, graph arcs are introduced to enforce ap-

plication specific smoothness constraints (δsmoothness). To ensure surface

feasibility intra-column and inter-column arcs are defined:

• Intra-column arcs Eintra column: ∀k on each column i, the intra-column
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arcs are defined by

Eintra column = {〈Vi(k), Vi(k − 1)〉}

• Inter-column arcs Einter column: Between any two adjacent columns i

and j the arcs enforce the smoothness constraints ensuring that the

surface cannot jump by more than the desired number of columns

above or below.

Einter column = {〈Vi(k), Vj(k − δsmoothness)〉 ∪ {〈Vi(k − δsmoothness), Vj(k)〉}

Information on the constraints and cost functions of a target segmentation

problem needs to be provided beforehand. An optimal surface is one which

has the minimum cost among all feasible surfaces. An example single

surface segmentation scenario is shown in Fig. 2.2. For the simultaneous

multiple surfaces and objects segmentation, we enforce additional arcs to

encode the mutual relationships between these entities.

(b) Multiple Surfaces/ Multiple Objects Graph Segmentation:

For segmenting the bones and cartilages of the femur and tibia, multiple

sub-graphs as described above are joined together by graph arcs which

specify pairwise topological relationships between the surfaces and/or ob-

jects that can also encode multi-surface/multi-object constraints. By link-

ing these surface-specific sub-graphs together, a single graph results. In

order to enforce minimum and maximum surface separation constraints

between the bone and cartilage sub-graphs of each of the femur and tibia
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Figure 2.2: Basics of LOGISMOS graph search. Every surface to be segmented is
represented as a sub-graph in our problem. For every sub-graph, we have directed
intra-column arcs going from the topmost node to the base graph B as shown for
columns i and j. We also have directed inter-column arcs which control the smooth-
ness jumps between columns. These two arcs are essential for the graph search to
work. The individual nodes have node unlikeliness costs assigned to them in G. The
V-weight net problem in G is converted to finding a non-empty closed set on an equiv-
alent graph G̃. Here the column length is K = 4. Note that the costs are transformed
between the left and right graphs so that the minimum-cost closed set approach can
be applied to the graph on the right; see [30,60] for details of this cost transform.
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objects, we introduce pairwise inter-surface arcs. We use apriori knowledge

about the anatomically feasible locations of the cartilage for each knee-joint

to set the minimum and maximum pairwise distances (δminDist, δmaxDist).

In regions with no cartilage, the δminDist & δmaxDist were enforced to zero

forcing the cartilage to be of zero thickness in these regions.

• Inter-surface arcs Einter surface: For every n ∈ {cart, bone} the pair-

wise inter-surface arcs are defined as

Einter surface = {〈Vi(nbone, k), Vj(ncart, k − δminDist)〉

∪{〈Vi(nbone, k + δmaxDist), Vj(ncart, k)〉}

The knee anatomy is such that portions of the tibia and cartilage are

in close apposition. Therefore inter-object constraints are established so

that they do not overlap since it is not anatomically feasible. Using ELF

based constraint point mapping [70], inter-object arcs with minimum and

maximum inter-object distances (δobjectMin & δobjectMin) are drawn between

the femur and tibia cartilage to ensure no overlap.

• Inter-object arcs Einter object: For every m ∈ {femur, tibia} being the

two interacting objects and d being the column offset between objects,

the pairwise inter-object arcs are defined as
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Einter object = {〈Vi(mfemur, ncart, k), Vj(mtibia, ncart, k − d+ δobjectMin)〉|∀k :

max (d− δobjectMin, 0) ≤ k ≤ min (K − 1 + d− δobjectMin, K − 1)}

∪{〈Vj(mtibia, ncart, k), Vi(mfemur, ncart, k + d− δobjectMax)〉|∀k :

max (δobjectMax − d, 0) ≤ k ≤ min (K − 1− d+ δobjectMax, K − 1)}

The graph construction ensures that the desired optimal surfaces correspond to

an optimal closed set in the weighted directed graph G [30, 69]. Searching for

an optimal closed set in G can be solved in polynomial time by computing a

minimum s–t cut in a derived arc-weighted digraph [25].

2.3 Cost function design

LOGISMOS algorithm is guaranteed global optimality based on the cost functions

provided. Therefore it is crucial to design good application specific cost function.

The costs associated with the bone detection exploits the property of finding

a strong dark to bright edge when traversing the graph column from inside of the

bone surface out. We designed directional 1D derivative operators which give us

the corresponding costs based on the edges encountered along the search lines. For

the cartilage, a weighted combination of the first and second derivative operators

given by w1 ∗ ∇(x, y, z) + (1 − w1) ∗ ∇2(x, y, z) was used, where w1 was determined

experimentally. This helps prevent interpreting cartilage inhomogeneities as edges.

Although human expert designed cost functions are very effective at capturing the

desired features there are several challenges : 1) Choosing the correct weighting com-

bination is challenging. 2) Same costs may not work for all parts of the anatomy. 3)

The same anatomical objects (eg. bone, cartilage) will appear differently in patholog-

ical cases because of the loss of structure and/or the appearance of lesions. Therefore

we designed random forest classifiers [8] to provide the cost functions. Random forest
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(RF) classifiers use the concept of bagging where for each decision tree, a random

subset of features are chosen thereby reducing correlation between the decision trees

which improves accuracy.

2.3.1 Classifier System Design

The previously used classifier [70] was a single stage RF classifier. The collected

features on the volumetric images were interpolated onto the nodes of the ELF geo-

metric graph. The major drawback of this method was that all the information used

were localized along the graph columns. Because of this locality, features failed to

capture a neighborhood of information that appears larger than a few nodes along

the column. There are several anatomical features that appear locally like a cartilage

however when examined in a global neighborhood will reveal themselves as a pathol-

ogy (e.g., synovial fluid). Therefore there was a need to use a combination of global

and local contextual features. Further, the single stage RF used a single classifier to

train all the columns of the graph. This did not account for the regionally-specific

appearance of the surrounding menisci, muscle, bone and other anatomies. The result

of which was that certain intensity profiles appearing in a specific region of the knee

that indicated a normal cartilage would only occur for a pathological case in another

local region. This discrepancy resulted in the improper training of the classifier which

caused an increase in the segmentation inaccuracy.

In this work [31] two RF based classifiers in hierarchy were used to train carti-

lage regions (Fig. 2.4). The first stage used a neighborhood approximation forests

(NAF) [34] trained on example image patches. The second RF classifier [8] collected

features along the ELF based geometric graph columns. For the second RF classi-

fier, the local regions of the knee were spatially clustered using k-means clustering

to account for the highly variable local anatomies surrounding the cartilage. Each of

the spatially clustered regions was trained using a different random forest classifier

for the second stage. The output probability maps of the NAF were used with other
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image-based features for training each of the regionally specific second RF classifiers.

The advantage of this approach is that the NAF classifier gathers contextual and

textual information from a larger global neighborhood of 3D image patches while the

RF classifier collects local feature information along the geometric search columns of

the graph. Disjoint training sets were used to help build a more realistic RF model

based on actual NAF performance on unseen images.

2.3.2 Neighborhood Approximation Forests

NAF is a supervised learning method which approximates the neighbors of an

unseen test image based on a similarity criterion. The definition of similarity is based

on a distance metric that is application specific. NAF uses a training set to learn

which clusters of images have the most similar neighborhood structures based on

these distances. NAF uses a random forest framework which consists of a collection

of several binary decision trees where each tree independently learns to predict the

closest neighborhood. Another advantage of NAF is the ability to use a wide variety

of distance-based metrics without modifying the core underlying approach.

For each tree in the forest, the training phase starts with the root node and con-

tinues to add new branches. Each node branch is trained to learn a set of binary tests

which progressively partition the image into subsets with respect to the user-defined

distance metric. The node split is optimized such that the user-defined distance

function yields the most compact partitioning. For every tree in the forest, a subset

of the entire feature set is chosen for training thereby improving generalization and

producing an independent prediction.

For our application, the NAF was trained on image patches where the pairwise

distance function ρ(I, J) captured the similarity of the image patches based on their

segmentation labels. The training image patches was defined as ρ(I, J) = ‖

seg(I)− seg(J) ‖l0 where seg(.) is the segmentation label map for the corresponding

image patch. The algorithm learned to group image patches that appeared similar to
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each other based on the segmentation similarity.

The unseen test image was partitioned into several smaller image patches. Each

patch was passed through a trained NAF classifier. The probability output of all the

image patches was combined to produce the final probability map (Fig. 2.3). This

was used as one of the inputs for the second clustered RF classifier.

Figure 2.3: The output probability map of the NAF for an unseen image overlaid
on the image volume. The color map indicates the probability output values with
brighter color indicating higher probability of the voxel being a cartilage region.

2.3.3 Clustered Random Forest Classifier

The second RF was trained on features collected at each node of the geometric

graph. Pre-segmented bone mesh surfaces that were corrected using just-enough in-
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teraction (See Chapter 5) were used for geometric graph construction during training.

Positive example labels corresponded to the nearest cartilage mesh intersection along

each graph column. The different features collected at each node point are shown

in Table 2.1 with feature values interpolated to the search path points from corre-

sponding feature volumes. To handle the large variability of cartilage intensities in

the volume, a k-means clustering algorithm was applied to the S0 mesh of femur and

tibia respectively resulting in spatial parcellation of the pre-segmented mesh surfaces

into 40 clusters each (total 80). Each of the clusters was trained using a separate

RF classifier that learned the regionally-specific appearance accounting for the sur-

rounding menisci, muscle, bone and other anatomies. The probability response to

the features along the search nodes in the testing datasets provided the node costs

for graph optimization.

Table 2.1: A list of features used to train the second RF classifier.

Index Description

1–9 3 eigenvalues of Hessian matrices on intensity image at σ = 0.5, 1.0, 2.0 mm
10–15 1st Gaussian gradient on intensity and NAF probability volumes

at σ = 0.36, 0.7, 1.4 mm
16–18 Intensity, Gaussian smoothed intensity, and NAF probability volumes
19–20 Laplacian derivative of intensity volume at σ = 0.36, 0.7 mm
21 Gabor texture feature
22–25 Intensity statistics: mean, variance, skewness and kurtosis of a

2 mm3 region centered around each graph node
26–28 Haar features (1.5mm kernel) along horizontal, vertical & diagonal directions
29–30 1D directional gradient along the search column direction on NAF

probability and intensity volume
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2.4 Experimental Validation

The data used to evaluate our method was provided by the Osteoarthritis Initiative

(OAI) which is available for public access1. All MR acquisitions were done using a

Double Echo Steady State (DESS) pulse sequence with an in-plane resolution of

0.36mm × 0.36mm and a slice thickness of 0.7mm, resulting in 384 × 384 × 160

voxels. 88 datasets with independent standards at baseline (BL) and 12-months

follow-up (12M) scans were used (176 3D MRI in total) to validate the accuracy of

LOGISMOS 3D segmentation. All MR volumes were from diseased subjects.

Fig. 2.4 shows the learning based segmentation workflow. For bone surface seg-

mentation, the initially employed gradient-based costs were very robust and remained

unchanged. For the cartilage classifier, the patient volumes at baseline were divided

into two training sets with 15 and 19 patients which were used to train the NAF and

the clustered RF classifier respectively. The datasets used for training the clustered

RF classifier were first inspected and just-enough interaction edited (See Chapter 5

for details).

Although the training datasets consisted of BL patient volumes only, we elimi-

nated any and all 12M volumes of the same patients from the testing set given the

similarity in appearance. The resulting testing set, therefore, consisted of 108 MR

volumes (54 MR volumes BL and 12M respectively). In other words, the training

and testing sets were distinguished at the patient level. All image volumes were first

LOGISMOS segmented using gradient costs. The geometric graph had 8006 and 8002

graph columns for the femur and tibia objects, respectively. The graph parameters

are listed in Table 2.4.

The NAF features consisted of image patches sampled over 15 datasets with 1521

sample points per patch. Because of the highly imbalanced ratio between the negative

and positive labels, we considered a neighborhood around the cartilage labels and

1https://oai.epi-ucsf.org/datarelease/
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Figure 2.4: The learning-based segmentation algorithm work-flow for training the
hierarchical random forests classifiers.

marked them as negative examples. The collected image patches consisted of all the

positive and the surrounding negative labels. We trained a set of 200 trees with

40,000 images patches as inputs to each tree. The second RF classifier was trained on

19 JEI-corrected datasets with 30 features (see Table 2.1) along with the ELF search

path for each node. 80 (40×2) RF classifiers were trained with each one representing

the given cluster with 800 trees per forest.

We also trained a second RF classifier without any features from the NAF while

keeping the same graph parameters as the hierarchical classifier system. The classifier

was trained on the same 19 patient datasets. The motivation behind the single stage

classifier was to evaluate the benefits of adding the NAF stage to the classifier system.

The validation workflow is shown in Fig. 2.4.
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Table 2.2: Parameters used for graph construction. Minimum inter-
surface and inter-object separations are zero.

Inter-surface Inter-object Smoothness Column size
max (nodes) max (nodes) (nodes) (nodes)

Learned cost 40 120 4 121
Gradient cost 20 60 2 61

2.5 Results

Surface positioning errors (compared against independent standard) achieved by

the hierarchical classifier, gradient cost, and single stage RF classifier are listed in

Tables 2.5, 2.5. Each resulting surface from the above methods were sub-plate ana-

lyzed for studying the thickness of specific sub-regions where the effects of the disease

were more pronounced (see Chapter 3 for sub-plate analysis algorithm details). Table

2.5 shows a significant reduction in signed and unsigned errors for all the sub-plates

of the femur (p � 0.001) over the single stage RF classifier and the gradient based

costs. The tibial sub-plates in Table 2.5 showed a significant reduction in unsigned

errors over the gradient costs for all the sub-plates. The signed errors showed a sig-

nificant reduction over the gradient based costs on all sub-plates except the central

Medial tibia (cMT). Comparison with the single stage RF classifier saw significant

improvement in unsigned errors over the overall tibia and central medial tibia (cMT)

plate while the errors in the central lateral tibia (cLT) were not significant.

Fig. 2.6 qualitatively compares the segmentation accuracies between the gradient

based costs and the hierarchal classifier with respect to the independent standard.

Both the femur and tibia are shown with their respective bone and cartilage seg-

mentations showing good agreement between learning-based segmentation and the

independent standard.
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Table 2.3: Cartilage border positioning errors (in mm) for femoral sub-plates
achieved by hierarchical classifier, gradient cost and single stage RF classifier.

NAF+RF Gradient p-value RF only p-value
Femur signed -0.01±0.18 -0.31±0.24 � 0.001 -0.10±0.17 � 0.001
Femur unsigned 0.55±0.11 0.69±0.13 � 0.001 0.56±0.10 � 0.001
cMF signed -0.04±0.29 -0.38±0.58 � 0.001 -0.11±0.27 � 0.001
cMF unsigned 0.52±0.16 0.78±0.35 � 0.001 0.55±0.17 � 0.001
cLF signed -0.26±0.24 -0.52±0.35 � 0.001 -0.36±0.20 � 0.001
cLF unsigned 0.42±0.12 0.65±0.20 � 0.001 0.47±0.11 � 0.001

Table 2.4: Cartilage border positioning errors (in mm) for tibial sub-plates
achieved by hierarchical classifier, gradient cost and single stage RF classifier.

NAF+RF Gradient p-value RF only p-value
Tibia signed 0.06±0.17 -0.11±0.35 � 0.001 0.11±0.22 � 0.001
Tibia unsigned 0.60±0.14 0.79±0.20 � 0.001 0.62±0.18 � 0.001
cMT signed -0.15±0.31 -0.25±0.77 0.193 -0.09±0.34 0.003
cMT unsigned 0.52±0.20 0.92±0.41 � 0.001 0.58±0.22 � 0.001
cLT signed -0.03±0.32 0.36±1.12 � 0.001 -0.01±0.32 0.16
cLT unsigned 0.46±0.17 0.79±0.99 � 0.001 0.47±0.18 0.31
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Figure 2.5: The testing workflow to compare the clustered random forest
classifiers with the existing methods on a set of 108 patients.
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(a)

(b) (c)

Figure 2.6: Segmentation accuracy in a representative subject. (a) Independent stan-
dard. (b) Gradient-costs LOGISMOS segmentation. (c) Learned-costs LOGISMOS
segmentation. Region marked by the arrow shows clear improvement in the segmen-
tation quality when using the learned costs.
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CHAPTER 3
AUTOMATED ANALYSIS OF SMALLER LOAD BEARING

REGIONS TO QUANTIFY THICKNESS LOSSES

Thickness analysis of cartilage is crucial for quantifying osteoarthritis. Analyzing

the whole cartilage structure drowns out the thickness losses that occur in the specific

regions of the knee joints. These sub-regions have been identified as areas which bear

the maximum stresses during motion with a common consensus by the osteoarthritis

research community on what regions of the femur and tibia that need to be analyzed

in isolation [16]. Several techniques [67, 68] for identifying the sub-plates exist all

of which require human interaction to provide an initialization for the sub-region

analysis.

In this chapter a fully automated sub-plates detection algorithm is detailed. The

algorithm requires as input the segmented bones and cartilages of the femur and

tibia (see Fig. 3.1 for a representative segmented surface). The sub-plate detection

algorithm is run on the resulting LOGISMOS segmented surface meshes which auto-

matically extracts and analyzes the nomenclature compliant sub-regions providing a

fast reliable technique for studying focal thickness losses in the load bearing regions

of the knee.

3.1 Trochlear Notch Identification

The first step in the sub-plate identification is the detection of the trochlear notch.

The notch is at the base of a groove along which the patella (knee cap) slides over the

femur providing for a smooth contact surface (Fig. 3.2). It is important to identify

the correct positioning of the notch because all the cartilage analysis on the femoral

condyle is done posterior to this plane since the image is known to suffer from partial

volume effects anterior to it.

The main anatomic feature we exploit is anterior to posterior (AP) curvature of the

groove of the femoral bone (Fig. 3.2b). The notch is at the base of the curvature before
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a.

b.

Figure 3.1: a. Shows a real osteoarthritic knee with the eroding cartilage exposing
the bone and the growth of osteophtyes on the outer edge of the femur and tibia
Source: ConforMIS via BoneSmart.org. b. Shows a mesh based representation of the
LOGISMOS segmented knee.
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the bone ridge structure rises sharply. An implicit cutting plane is used to isolate

the analysis region and is represented by n̂.p where n̂ is the normal direction from

the plane and p is a point on the plane. On isolating the groove regions using simple

implicit plane geometry cutting, we draw a family of contours along this surface. The

sharp rise of the bone structure along the contour near the base of the ridge gives a

large change in contour positioning value traversing in the AP direction. To increase

robustness we find the positions of largest change on all of the closely positioned

groove contour lines and average them to find the desired trochlear notch (Fig. 3.3).

3.2 Sub-Plate Detection using Implicit Cutting Plane Geometry

Using an implicit plane normal to the AP plane at the trochlear notch separates

the posterior regions. From the same position, using another implicit plane with its

normal parallel to the AP direction separates the posterior region into the medial and

lateral condyle. For each femoral condyle, the load bearing regions is defined as 60

% of the distance in the AP direction from the trochlear notch to the posterior-most

point of the respective condyles. Isolating them using cutting planes normal to the

AP plane at the 60 % region isolates the load bearing regions of the central medial

and lateral femur (Fig. 3.2).

The tibia is divided into the medial and lateral compartments using cutting planes

positioned at the trochlear notch with its normal perpendicular to the AP plane Fig.

3.4. After subdividing the plates into the medial and lateral regions, we isolate the

central tibia and the peripheral sub-regions. The central 20% elliptical area of the

medial and the lateral plate is computed around the center of mass of each respective

plate. The radius of the major and the minor axis is computed as a ratio of bounds

of the respective medial/lateral compartments. The major axis radius is computed

from the compartment bounds along the AP direction and similarly, the minor axis

radius is computed from the ratio of the compartment bounds perpendicular to the

AP direction. Furthermore, the remaining regions are isolated using a 45◦ and 135◦
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a.

b.

Figure 3.2: a. Example LOGISMOS segmented bone mesh with the trochlear notch
region highlighted. b. Bone mesh highlighting the trochlear groove (overlayed in
yellow) in the anterior to posterior direction. The blue arrow indicates the trochlear
notch on the groove at the base of the groove curvature before the bone ridge structure
rises sharply.
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a. b.

Figure 3.3: a. Trochlear notch Identification exploits the AP curvature of the groove
on the femoral bone. After isolating the groove region, the trochlear notch is identified
by taking an average gradient on a family of closely positioned contour lines along
this surface. b. The load bearing regions of the femur identified by isolating 60 % of
the distance from the trochlear notch to posterior most in the AP direction on each
condyle respectively.

cutting planes around the center of mass of their respective compartments to give all

four peripheral sub-regions Fig. 3.4. The final list of all the extracted sub-plates from

the automated sub-plate detection algorithm is visually shown in Fig. 3.5.

For most of our analysis throughout the thesis we focus on reporting the thickness

losses in the four sub-regions, i.e. the medial/lateral femur and tibia.
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a.

b.

Figure 3.4: a. Using the trochlear notch positioning and implicit cutting planes
parallel to the AP direction the medial and the lateral tibia can be isolated. b.
The central 20% elliptical region of the tibial plates with the major and minor axis
computed using the bounds of the separated plates regions. Further using 45◦ and
135◦ cutting planes around the center of mass isolates the peripheral regions of the
medial and lateral plates respectively.
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Figure 3.5: Automated sub-plate division of the cartilage. The 60% central lateral
(cLF) and central medial femur (cMF) are shown. Each Medial (MT) and lateral
tibia (LT) regions are subdivided as: central (cLT/cMT), interior (iLT/iMT), exterior
(eLT/eMT), anterior (aLT/aMT) and posterior (pLT/pMT) regions respectively.
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CHAPTER 4
4D LONGITUDINAL SEGMENTATION OF KNEE MRI

4.1 Motivation

In Chapter 2, the cost function design and the 3D LOGISMOS segmentation al-

gorithm for knee MRI were explained. All patients in the OAI were enrolled in a

longitudinal study with follow-up MRI scans at regular time point intervals. The

availability of multi-time point information can be leveraged to provide additional

information. This becomes particularly beneficial in patients with progressively wors-

ening osteoarthritis. With no current FDA approved disease modifying OA drug all of

these patients eventually undergo total knee replacement. With disease progression,

artifacts such as cartilage and bone marrow lesions, synovitis, cartilage thinning ap-

pear that have a similar appearance to cartilage making it a challenging task even for

expert radiologists. Using information of earlier time points of the same patient when

the knee is relatively healthier and with lesser artifacts helps to add extra contextual

information thereby reducing the inter-time point variability ensuring that the carti-

lage losses are within physiologically possible ranges. To the best of our knowledge,

this is the first attempt at a 4D knee MRI segmentation algorithm encoding the sim-

ilarity information in a graph search framework resulting in reduced inter-time point

variability and improved segmentation accuracy.

In order to perform 4D segmentation, the crucial first step is to register the pre-

segmented mesh surfaces and the corresponding image volumes across time-points

to ensure that the 4D constraints establish correspondences temporally between the

similar regions of the knee. Further, given that the bone surface is fairly rigid (only

slight changes in bone shape were reported for patients with osteoarthritis with time)

we use rigid registration to spatially similar region correspondences.

Across all time-points the same configuration is maintained in terms of the geo-

metric graph parameters and topology, enforcing contextual information temporally
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is done by drawing inter-time point arcs. Both the registration and the graph arc

construction are detailed in the sections below.

4.2 Establishing Point Correspondences

After pre-segmentation of each of the time-points being analyzed, iterative closest

points (ICP) algorithm [5] was used to register the pre-segmented mesh surfaces

to enforce inter-time point constraints. The algorithm iteratively registers meshes

as point clouds until convergence such that the points from one set are closest to

the other in the least squares sense. Because the least squares optimization has a

tendency to get stuck at local minimum a two-step approach was employed. With

a large translational or rotational movement between the two-time points, there is a

tendency to mismatch the surfaces, i.e. femur matched to the tibia or vice versa if

they were the closest in terms of the movement.

To prevent the mismatch, the first step used the femur mesh for ICP registration.

The transform matrix was applied on both the femur and tibia meshes. Given that

they were almost close to each other the ICP registration was run again using both the

femur and tibia points together as a single point cloud. This ensured that vertex to

vertex correspondences and thereby column correspondences were established. Fig.

4.1 illustrates the establishment of correspondence between two-time points. The

same two step transformation matrices were applied to the image volume to ensure

that both the pre-segmented meshes and the volume were registered to a common

space.

4.3 Incorporating Inter-Time Point Context

For the 4D segmentation, the datasets at each time point have their respective

3D multi-surface multi-object constraints explained in the chapter 2. To constrain

across time points we use inter-time point arcs between the nodes of the columns con-

necting the registered bones & cartilage surfaces at different time points with each
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Figure 4.1: Establishing point correspondences between the time-points after pre-
segmentation. The meshes are registered using ICP to establish column correspon-
dences. The same transformation is applied on the corresponding volumes. (a) shows
the two time-points before registration. The meshes are colored differently and the
volume border is highlighted in yellow to indicate its positioning. After ICP, (b)
shows the registered meshes and the volume with border positioning highlighted.
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other. Using the prior information we can set the different minimum and maximum

permissible limits for the bones and cartilages respectively so that the undergoing

losses stay within a physiologically feasible range. The arcs introduced define a

(δtimeMin, δtimeMax) where the inter-time-point maximum allowed change (δtimeMax)

was set to 0.6mm based on available clinical literature [17].

Extending the terminology used earlier to define the different arc constraints, the

inter-time-point arcs between two longitudinally corresponding columns t1, t2 are

defined as:

Einter time points = {〈Vi(t1,m, ncart, k), Vi(t2,m, ncart, k − δtimeMin)〉}

∪{〈Vi(t1,m, ncart, k − δtimeMax), Vi(t2,m, ncart, k)〉}

∪{〈Vi(t1,m, nbone, k), Vi(t2,m, nbone, k − δtimeMin)〉}

∪{〈Vi(t1,m, nbone, k − δtimeMax), Vi(t2,m, nbone, k)〉}

After the graph edges and nodes have been constructed, the 4D LOGISMOS

segmentation problem is solved by computing a minimum s − t cut in a derived arc

weighted digraph.

4.4 Experimental Validation

88 datasets with baseline (BL) and 12-months follow-up (12M) scans from the

OAI were used (176 3D MRI in total). Independent standards released by the OAI

were available for all the datasets. The bone surface segmentation used the initially

employed gradient based costs. For the cartilage the hierarchical random forests

classifier proposed in chapter 2 was used. The graph parameters used are shown in

Table. 2.4 with the additional inter-time-point constraint set at 0.6 mm.

Given that OA is a slowly progressing disease, the expectation was that there

would not be a significant appearance of artifacts of thickness losses for the available
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set of 108 datasets over a one year study period where the true benefits of using 4D

can be appreciated. To validate the benefits of 4D over a longer study period, 399

patients with BL, 12M, 24M, 36M and 48M follow-up scans from the OAI were used

resulting in a total of 1995 3D MRI. All patients were 3D LOGISMOS segmented

and simultaneous five time-point 4D LOGISMOS segmented followed by sub-plate

analysis. Assuming that the loss of thickness due to OA was almost linear over time,

we hypothesized that the correlation coefficient R would have a higher number of

datasets close to 1.0 for 4D indicating that the additional contextual information

helps improve segmentation accuracy over all the time-points.

4.5 Results

Tables 4.5, 4.5 compare signed and unsigned border positioning errors w.r.t to

the independent standard for 3D and 4D LOGISMOS segmentation at BL and 12M

follow-up time points respectively. As expected the overall segmentation accuracy

is almost the same between the two methods except for a few of the plate regions

highlighted in bold showing statistically significant differences over 3D (paired t-test

comparison with p=0.05). Fig. 4.2 compared the histogram of correlation coefficient

(R) values for the different sub plates from 4D and 3D segmented results. We see

that for 4D the R value has a larger number of patients towards the right of the

charts especially for the medial femur (MF) and medial tibia (MT) indicating more

accurate representation of the thickness losses. Further Table 4.3 shows that the

paired t-tests between the R values of 3D versus 4D for all the sub-plates showed

statistically significant differences.

Fig. 4.3 qualitatively shows the improvement of 4D LOGISMOS over 3D. Note

that there is no obvious edge distinguishing the tibia and femur cartilage. Using

temporal context from the other time points we see that the proposed method is able

to correctly position the cartilage for the tibia and femur in 4D.
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Table 4.1: Cartilage surface positioning errors (in mm)
of 4D versus 3D LOGISMOS at Baseline. Paired t-test
significance value was set at p = 0.05.

4D 3D p-value
Femur signed 0.01±0.18 0.01±0.19 0.027
Femur unsigned 0.53±0.11 0.54±0.11 � 0.001
cMF signed -0.01±0.25 -0.03±0.27 0.015
cMF unsigned 0.51±0.16 0.52±0.17 0.092
cLF signed -0.26±0.22 -0.25±0.23 0.108
cLF unsigned 0.42±0.10 0.42±0.10 0.790
Tibia signed 0.08±0.17 0.07±0.16 0.039
Tibia unsigned 0.59±0.14 0.60±0.14 0.140
cMT signed -0.13±0.28 -0.14±0.29 0.125
cMT unsigned 0.50±0.18 0.51±0.20 0.039
cLT signed 0.00±0.30 0.00±0.31 0.338
cLT unsigned 0.45±0.17 0.46±0.18 � 0.001

Table 4.2: Cartilage surface positioning errors (in mm)
of 4D versus 3D LOGISMOS at 12Month. Paired t-test
significance value was set at p = 0.05.

4D 3D p-value
Femur signed -0.02±0.17 -0.04±0.17 0.062
Femur unsigned 0.55±0.11 0.55±0.11 0.601
cMF signed 0.02±0.27 -0.04±0.30 0.016
cMF unsigned 0.52±0.15 0.53±0.16 0.614
cLF signed -0.30±0.21 -0.30±0.23 0.853
cLF unsigned 0.43±0.12 0.44±0.13 0.318
Tibia signed 0.07±0.19 0.06±0.18 0.464
Tibia unsigned 0.60±0.16 0.60±0.14 0.310
cMT signed -0.14±0.29 -0.15±0.31 0.619
cMT unsigned 0.52±0.17 0.53±0.17 0.341
cLT signed -0.06±0.31 -0.06±0.30 0.629
cLT unsigned 0.45±0.16 0.44±0.16 0.256



www.manaraa.com

44

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: R value histogram of the different sub plates in 4D (left column) and 3D
(right column) for medial & lateral femur (MF, LF), and medial & lateral tibia (MT,
LT). We see that the 4D based correlation coefficient has higher number of patients
with a R value closer to one indicating agreement with the linear thickness loss over
time points.
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Table 4.3: Paired t-tests on the R values computed from 3D versus 4D LOGISMOS
segmentation. Every plate showed statistically significant differences indicating that
the 4D segmentation does help improve the accuracy over multiple time-points and
are able to capture the thickness losses better.

R-value
4D vs 3D

MF LF MT LT

p-value <0.001 0.0113 <0.001 <0.001

(a)

(b) (c)

Figure 4.3: Qualitative improvement of 4D segmentation versus 3D. (a) Ground
Truth Segmentation, (b) 3D segmentation, (c) Proposed 4D segmentation clearly
shows limited ability of the 3D approach while the 4D approach benefited from the
temporal context and accurately delineated the cartilages of the femur and tibia.
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CHAPTER 5
JUST ENOUGH INTERACTION FOR KNEE MRI

5.1 Motivation

Automated LOGISMOS segmentation is shown to be robust for most of the cases

of osteoarthritic knee MRI segmentation. However given today’s state of the art

no fully automated algorithm is accurate 100 % of the time. Interactive correction

methods are designed to help ease the post-processing needed. Several techniques

have been proposed in the literature and were reviewed in the introduction. Several

of the methods correct for segmentation inaccuracies by directly matching the object

boundaries with the interaction which after several iterations result in the surfaces

having local topological errors.

The proposed interaction algorithm uses a graph based LOGISMOS framework

[40,70] with the user clicked points hereafter called nudge points interacting directly

with the underlying graph framework. This method has guarantees of global opti-

mality for every interaction and differs from the traditional voxel-by-voxel editing by

requiring just enough (i.e., limited) interaction (JEI) to correct the original automated

segmentation if needed. The proposed method may appear similar to the Boykov’s

graph cut [7], however, their interaction algorithm is not able to guarantee global op-

timality for multiple surfaces and objects. LOGISMOS-JEI always guarantees global

optimality when handling multiple objects and surfaces. The JEI architecture and

GUI are designed to be platform and application agnostic and their details are covered

in [71].

The JEI method starts with an initial automated LOGISMOS segmentation. Post

segmentation, the resulting optimized graph state (called residual graph) is saved for

the purposes of JEI. The JEI algorithm was extended from Sun et al. [63] to handle

multiple surface multiple object interactions. Further, a new interaction mechanism

was developed along with a faster graph optimization library to provide almost imme-
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diate feedback on the interaction. The overall JEI workflow is very similar for both

the 3D and 4D LOGISMOS-JEI with a few modifications to handle the 4D.

5.2 JEI Work-flow

The electric lines of force (ELF) based geometric graph, image volume and residual

graph were loaded into a custom designed GUI (see Fig. 5.1) to inspect segmentation

quality and perform JEI. The GUI is designed as a modular system [71] where each

module performs a specialized set of atomic tasks independently without having to

know the details of the other module. All inter-module communication and data

exchange were performed by the Boost.Signals2 library signal and slot mechanism.

Building on this modular GUI system we have designed knee MRI specific modules

for the handling of MRI volume and surfaces, interpreting the nudge points and

subsequently changing the cost functions in the appropriate columns to correct the

segmentation surfaces. Details of the workflow are as follows:

5.2.1 User provided nudge points

The user identified correction is provided as a set of nudge points which guide the

segmentation to the correct position. Fig. 5.3a shows the GUI magnified with the

volume and the automated LOGISMOS segmentation results overlayed. The partic-

ular slice indicated is a case with severe OA having bright fluid regions improperly

segmented as cartilage. The blue line indicates interpolated nudge points indicated

by the user approximately identifying the correct cartilage region.

5.2.2 3D local graph cost modification

To identify the underlying graph columns influenced by the nudge points (defined

as a contour), a k-dimensional (kD) tree algorithm is used which stores all the geo-

metric graphs positions. In previous JEI applications [63] the graph was constructed

on a regular 3D grid where the nearest graph columns could be identified quite easily.
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However given the complex shape of the knee objects and the ELF graph constructed

based on it, a more sophisticated query of the closest columns is needed which does

not compromise on speed. The kD tree allows for a O(log n) query on the N nearest

graph nodes (empirically determined) for every nudge point. Once identified, the

costs (i.e. unlikeliness) at corresponding columns associated with these nodes are

modified as

c(i, j) =


0, if D((i, j), n(i, j)) < ∆

1, otherwise

,

with c(i, j) defined as the cost of node j on column i, D((i, j), n(i, j)) the distance

between node closest to the nudge point (i, j) and its nearby intersecting nodes n(i, j)

within the ∆ tolerance.

5.2.3 Max-flow re-computation

Following the local graph cost modification the max-flow is recomputed in 3D

within a few milliseconds since a small number of graph columns have been modified.

The updated surfaces are rendered back onto the GUI. As seen in Fig. 5.3b the

correction made is reflected in the updated cartilage surfaces.

The above workflow is repeated to correct the tibial cartilage errors as well. In

the intermediate steps following the correction of the femur, the tibia bone and car-

tilage surfaces appear to worsen. This can be attributed to a combination of the

existing graph costs and their respective local constraints. Since the tibia cartilage

surface has no clear defined edge cost in that region, the surface result moved along

with the femur corrected cartilage surface. However, once the nudge points provided

the appropriate locations for cost modification the erroneous surfaces were corrected

(Figs. 5.3c,d). Note that the corrections made on a single 2D slice resulted in the

entire locally affected 3D neighborhood being corrected. This can be appreciated in

the corresponding circled regions of the surface model.
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5.2.4 Undo-Redo Interaction Capabilities

For a more consistent segmentation interaction, we save the user interaction steps

during the JEI. A stack was used to save the inputted nudge points and the surface

ID at each editing step. The editing was reverted by popping the stack which restored

the previous costs on the local graph columns. Re-optimizing the graph resulted in

the previous surfaces. However, the popped stack was not deleted unless a different

interaction was continued. If the interaction needed to be redone, the pointer simply

moved to the previous position on the stack and repeated the same steps as above to

redo the correction.

When a new automated LOGISMOS surface is loaded that was previously edited

the user can load the editing stack to bring the interaction to most up-to-date edited

state. The edits can be continued from that point. We anticipate that this feature

would be very useful in reducing the inter-observer and intra-observer variability.

5.3 Longitudinal JEI

For the 4D LOGISMOS-JEI, the GUI was extended to enable visualization and

interaction of all patient time-points simultaneously. The viewer also enabled syn-

chronized scrolling across datasets. Fig. 5.2a shows eight time-points of the same

patient (baseline, 12, 18, 24, 36, 48, 72 and 96 month follow-ups) being simultane-

ously visualized. Each individual thumbnail view can be expanded (see Fig. 5.2b) to

a detailed larger GUI (identical to 3D GUI) for interaction.

Once the user decides on which particular time-point and a slice that required edit-

ing the thumbnail view is expanded to provide a full editing capable GUI (Fig. 5.2b).

The interaction mechanism is similar to the 3D JEI where a set of nudge points on a

single 2D slice modifies the graph node costs in the local 3D neighborhood columns of

the given time-point. Further, since the longitudinal JEI has a single large underlying

residual graph with temporal inter-time-point constraints the corresponding local 3D

neighborhood column locations at the other time-points are also corrected. To recall,



www.manaraa.com

50

Figure 5.1: The graphical user interface for 3D JEI with the image volumes and the
surface meshes overlayed.

the 4D automated LOGISMOS registers all the patients time points to a common

space. Although the graph nodes and columns do not hold any spatial information,

the ELF based geometric graph required the registration information to parse the

clicked nudge points positions to the correct space. This additional meta information

of the transformation matrices that were used for the registration of the various time

points in 4D was also loaded to the 4D GUI.

5.4 Experimental Methods

14 patient MRI volumes with varying degrees of OA from the OAI with indepen-

dent standard available were used in the study. All subjects were scanned using the

DESS protocol with a voxel resolution of 0.36×0.36×0.7 mm3. All datasets were first

segmented using the automated 3D LOGISMOS followed by JEI editing. Further, the

same set of 14 patients were segmented at BL and 12M by 4D LOGISMOS and then
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(a)

(b)

Figure 5.2: 4D LOGISMOS-JEI. (a) Longitudinal JEI viewer screen-shot showing a
thumbnail of eight time-points of a single patient simultaneously. (b) Smaller editing
window for each 3D time-point.

simultaneously 4D JEI edited. Cartilage border positioning errors and the thickness

accuracy of the sub-plates after JEI editing were reported.

5.5 Results

Signed and unsigned cartilage surface positioning errors against the independent

standards were reported in Tables 5.1, 5.2. The results were reported for 3D Baseline

JEI and 4D JEI of baseline and 12M simultaneously edited on the central medial/lat-

eral femur (cMF/cLT) and the central medial/lateral tibia (cMT/cLT). Paired t-tests

(significant set at p = 0.05) were computed to test improvements in the accuracy by

comparing the cartilage surface positioning errors of gradient costs based automated
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Table 5.1: Signed surface positioning errors (in mm) of JEI-corrected versus gradi-
ent costs based automated LOGISMOS segmentation. Bold entries mark statistical
significantly better performance of the pairwise comparisons.

Cartilage Signed
Error [mm]

cMF cLF cMT cLT
JEI Automated JEI Automated JEI Automated JEI Automated

Baseline 3D -0.05 ± 0.21 -0.90 ± 0.96 -0.19 ± 0.12 -0.61 ± 0.32 0.02 ± 0.17 0.41 ± 0.89 -0.01 ± 0.18 0.22 ± 0.46
Baseline 4D -0.11 ± 0.13 -0.59 ± 0.71 -0.28 ± 0.13 -0.57 ± 0.37 -0.05 ± 0.18 0.13 ± 0.67 -0.01 ± 0.10 0.14 ± 0.40

12 Months 4D 0.02 ± 0.37 -0.46 ± 0.73 -0.25 ± 0.17 -0.56 ± 0.44 -0.12 ± 0.12 0.07 ± 0.61 0.01 ± 0.17 0.20 ± 0.44

Table 5.2: Unsigned surface positioning errors (in mm) of JEI-corrected versus gradi-
ent costs based automated LOGISMOS segmentation. Bold entries mark statistical
significantly better performance of the pairwise comparisons.

Cartilage Unsigned
Errors [mm]

cMF cLF cMT cLT
JEI Automated JEI Automated JEI Automated JEI Automated

Baseline 3D 0.41 ± 0.06 1.14 ± 0.97 0.33 ± 0.06 0.68 ± 0.23 0.37 ± 0.07 0.92 ± 0.53 0.33 ± 0.09 0.63 ± 0.21
Baseline 4D 0.46 ± 0.19 0.91 ± 0.48 0.38 ± 0.12 0.69 ± 0.21 0.40 ± 0.12 0.76 ± 0.25 0.31 ± 0.08 0.59 ± 0.16

12 Months 4D 0.44 ± 0.23 0.87 ± 0.46 0.37 ± 0.12 0.72 ± 0.22 0.38 ± 0.10 0.71 ± 0.25 0.36 ± 0.10 0.65 ± 0.16

LOGISMOS for the same 14 patient datasets. Bold entries marked statistically sig-

nificantly better performance of the pairwise comparisons. All the unsigned surface

positioning errors significantly improved. While the signed errors improved for all the

sub-plates after JEI correction with only the bold ones showing statistical significance.

The sub-plate analysis algorithm was run on the independent standard surfaces

as well. Fig. 5.4 shows a scatter plot of thickness accuracy compared against the

independent standard for the cMT and cLT. We see that all the thickness values

showed good agreement with the independent standard. Further, the 14 datasets

took on an average of 16 min for 3D JEI editing while the combined Baseline and

12M editing of 4D JEI took an average time of 22 min. We expect that with more

time points edited simultaneously the time required for interaction per dataset to

reduce in comparison with individually 3D JEI editing each of them.
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Figure 5.3: JEI work-flow to correct segmentation inaccuracy. The circled region
indicates the 3D neighborhood correction based on a single 2D slice editing. The
four surfaces shown as contours and 3D objects are the femur bone and cartilage
(colored red and green respectively) and the tibia bone and cartilage (colored blue
and yellow respectively). The nudge points marked in the intermediate steps are
shown in cyan. A detailed video demonstration of the interaction steps is available
at http://bit.ly/2blYXFz.
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Figure 5.4: Thickness accuracy compared against the independent standard (in mm)
for a central medial and lateral tibia sub-plates (cMT, cLT). The x-axis represents
the thickness of the independent standards while y-axis represents the JEI-corrected
thickness values.
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CHAPTER 6
PUTTING IT ALL TOGETHER: QUANTITATIVE ANALYSIS TOOLS

TO UNDERSTAND CARTILAGE THICKNESS LOSSES

6.1 Motivation

Given that the state of the art diagnosis currently used in clinics are semi-

quantitative grading techniques to diagnose osteoarthritis there is a pressing need to

deliver highly sensitive quantitative imaging-based bio-markers to improve diagnosis

and aid in the early detection of osteoarthritis. Commonly analyzed are thickness in

selected sub-regions of the knee which was covered in Chapter 3. However along with

the loss of cartilage being the main indicator of osteoarthritis there is increasing evi-

dence that osteoarthritis is a multi-parameter disease with several other non-cartilage

imaging bio-markers showing promise as early of OA in patients (see Sec 1.4 for back-

ground details). In this chapter quantitative analysis of bone shape as a potential

non-cartilage bio-marker is studied with statistically significant changes in bone shape

between populations demonstrated. Further using cartilage thickness from previous

time-points we use regression analysis to predict thickness of a later time-point.

6.2 Statistical Shape Analysis of Femur Bones

Statistical shape analysis allows a highly localized measurement of tissue atrophy

and may be important in quantifying disease progression. Therefore population stud-

ies need reliable methods to quantify shape changes in OA. This section presents a

novel, fully automated pipeline to quantify local differences in the femoral bone shape

in OA. LOGISMOS segmented femoral bones are used for shape analysis computa-

tion using spherical harmonics point distribution model (SPHARM-PDM) [62]. The

hypothesis is that significant differences will be observed around the trochlear groove.

In addition to confirming this a priori hypothesis, the fully 3D approach enables an

exploratory study that may reveal previously unknown structural changes in OA.

Many methods exist for building statistical shape models including pairwise [42, 64]
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and group-wise approaches such as minimum description length (MDL) [12, 24] and

entropy-based correspondence [10, 46] (see [2] for an excellent review). Given the

spherical topology and relatively simple shape of the femur bone, SPHARM-PDM is

a natural choice for femoral shape analysis. Note that a fundamentally different ap-

proach would be volumetric registration of images (see [33] for a review). The current

application is focused on the shape rather than image intensity characteristics and

thus focuses on surface-to-surface registration instead.

The approach consists of three main steps: a. LOGISMOS segmentation resulting

in the bones and cartilage surfaces of the femur and tibia. Although the analysis is

only concerned with the analysis of shape changes in the femur bone for the cur-

rent study, using the contextual information from multiple surfaces helps improve the

segmentation accuracy. b. SPHARM-PDM approach [62] to obtain point-wise corre-

spondences between subjects to build a statistical shape model. c. Finally, statistical

analysis is performed using a non-parametric permutation test [47] to compare the

clinically different populations with each other.

6.2.1 SPHARM-PDM correspondence and statistical analysis

A statistical shape model is built using the SPHARM-PDM framework [62] 1.

Given a 3D surface of spherical topology, SPHARM-PDM generates a spherical pa-

rameterization in an area-preserving manner while minimizing distortions. Orienta-

tion is determined using first-order ellipsoid alignment. Given a population of surfaces

that were parameterized using this approach, surface locations that map to the same

(φ, θ) coordinates on the sphere correspond to each other.

We begin by minimally smoothing the binary bone segmentation result from LO-

GISMOS. The interior holes in the segmentation are filled. Any remaining handles

are detected and removed by either cutting them open or filling them in, based on

whichever approach would modify fewer voxels in the segmentation [28]. This re-

1https://www.nitrc.org/projects/spharm-pdm
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sults in binary segmentations of spherical topology, which are then converted to sur-

face meshes via marching cubes. The SPHARM-PDM framework then computes the

spherical parameterization, using the spherical harmonics of the form

~v(θ, φ) =
∞∑
l=0

l∑
m=−l

~c m
l Y m

l (θ, φ), (6.1)

where θ ∈ [0, π] and φ ∈ [0, 2π] are the spherical coordinates, l and m are the

order and degree of the spherical harmonic, and Y m
l (θ, φ) is the associated Legendre

polynomial. The coefficients ~c m
l are computed using least squares optimization which

seeks to minimize metric distortion while preserving area.

The resulting spherical parametrization is then uniformly re-sampled using an

icosahedron subdivision to determine sample points on the sphere. The alignment is

achieved using the first order ellipsoid from spherical harmonic coefficients by rigid

Procrustes method.

Statistical shape analysis was performed by computing the modified Hotelling T 2

two-sample metric at every surface sample [47] to test whether two groups of surfaces

differ from each other locally. The metric is tested using permutation tests with the

null hypothesis that the two groups of surfaces are statistically identical to each other.

6.2.2 Experimental Methods

576 knee MRI volumes from 192 subjects available at baseline (BL) , 12 months

(12M) and 24 months (24M) follow-up clinical visits as part of the OAI Biomarkers

consortium project [27] was used for the current study. All subjects were imaged using

a double echo steady state (DESS) sequence with a resolution of 0.36×0.36×0.7 mm.

All subjects were classified as progressor (PROG, n=79) or non-progressor (NPROG,

n=113) by the OAI experts based on changes in the KL grade and increased knee pain

between BL-24M [27]. We limited the current study to patients that had a baseline

grade of KL = 2.
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The goal of the study was to identify statistically significant differences in the

femur bone shape that may provide early indications of OA progression. Based on

initial reports in the literature, we hypothesized that the trochlear groove region would

show statistically significant differences. This hypothesis was tested by analyzing

differences between the PROG and NPROG groups at each time-point. We further

hypothesized that any differences found in the earlier time-points would become more

pronounced as the disease progressed.

Left and right knees were analyzed separately to explore any potential laterality

differences. 20 spherical harmonics were used per surface. We used 1000 iterations

for generation of the parametric mesh. The icosahedron sampled sphere used a sub-

division factor of 20 for a total of 4,002 vertices on the surfaces. For the statistical

permutation tests we used 20,000 iterations with a significance value set at p = 0.05.

The Shape Population Viewer2 was used for quality control of the SPHARM-PDM

parametrization, and any failures were excluded (n=15 at BL, n=18 at 12M, n=15

at 24M).

6.2.3 Results

Each MRI volume was segmented with LOGISMOS and the spherical parameter-

ization was obtained with the SPHARM-PDM framework (approx. 6 hours/surface).

Following quality control on all results, statistical analysis was conducted (approx.

20 min).

Fig. 6.1 shows the results of the correspondence quality obtained with SPHARM-

PDM. A representative set of eight left knee surfaces is shown with their φ coordinate

maps. The correspondence quality can be evaluated by the observing the consistent

placement of the φ = 0 line (where the red and blue regions come together) in

anatomically corresponding regions on each surface, despite the considerable shape

variation between the knees.

2https://www.nitrc.org/projects/shapepopviewer
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Figure 6.1: Qualitative correspondence evaluation on an illustrative subsample. The
color map represents the φ coordinates on the parameterized surfaces.

Fig. 6.2 shows the p-values of significant surface differences between the PROG

and NPROG groups at each time point. The trochlear groove region shows highly

significant differences. The observed differences spread spatially and gain power at

later time points. Weaker differences include the condyles on the left knees as well as

lateral and medial peripheral regions of the right knees.

6.3 Predicting Thickness Losses

Cartilage thickness is the main imaging bio-marker that is used to understand

the progression of OA. Given its importance, it is beneficial to predict the thickness

at later time-points to understand the losses or in clinical drug trials to predict the

efficacy of the treatment. The goal of this study was to use regression analysis to

predict the thickness of the load bearing sub-plates at 48M using sub-plate thickness
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Figure 6.2: p-value map of shape differences between groups (PROG vs NPROG) at
BL, 12M and 24M.

value computed for the same patient at BL, 12M, 24M, and 36M. The study explored

two main experiments: a. Different types of regression techniques that best capture

the relation between the dependent variables (thickness at BL-36M) and the inde-

pendent variable (thickness at 48M), b. the effect of using 3D segmentation or 4D

simultaneous multi-time point segmentation to compute the thickness.

6.3.1 Regression Analysis

Linear Regression Models Linear regression models the relationship between the

target output variable (ŷ) as a linear combination of the inputs (X). The predicted
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value can be modeled as:

ŷ(w, x) = w0 + w1x1 + · · ·+ wpxp (6.2)

where w = (w1, ..., wp) are the coefficients that are used to combine the different

sub-plate thickness values to predict the output thickness y, X are the thickness values

of the inputs. The coefficient weights are solved by fitting a model which minimizes

the residual sum of squares between the predicted response and the observed responses

in the least squares sense by solving:

minw||Xw − y||2 (6.3)

Support Vector Machine Regression Support vector machines are supervised

learning methods that can be used for regression. They work by constructing a set

of higher dimensional hyperplanes which are optimized by defining the loss function

that ignores errors which lie within a certain distance of the true outputs (also called

as epsilon intensive loss functions). The SVM regression is optimized by posing the

problem as a quadratic programming problem. The problem is reformulated into

the lagrangian dual thereby avoiding the inequality constraints and simplifying the

optimization process [65]. A detailed explanation of the support vector machine

regression is provided in [58].

6.3.2 Experimental Methods

600 patients from the OAI at BL, 12M, 24M, 36M and 48M follow-up clinical

visits which are part of the FNIH bio-markers project [27] was used for the current

study. Out of the 600 patients, 201 of them had one or more missing follow-up clinical

visits and were dropped resulting in a total of 1995 (399 x 5-time points) knee MRIs.

All the time points were segmented using 3D LOGISMOS and simultaneous five
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time point 4D LOGISMOS segmentation. All 1995 segmentation results were quanti-

tatively analyzed using the sub-plate detection algorithm for thickness from 3D and

4D segmentations separately. Scikit-learn package was use to run the regression anal-

ysis [49]. Support vector regression with radial basis function kernels (SVR-rbf) and

Linear regression (LR) were used for the prediction analysis. The first experiment was

to compare the SVR-rbf with the linear regression to understand if a linear model was

sufficient in capturing the thickness. Secondly the prediction accuracy of the different

sub-plates were studied by taking the BL-36M as training and predicting the 48M

thickness. This was compared with the computed 48M accuracy. The analysis used

a leave-one out strategy (398 training & 1 testing). Regression analysis was done on

3D and 4D sub-plate thickness to study the benefits of inter-time point contextual

information enforced during the 4D segmentation. Further to test the benefits of each

time-point thickness used during training, a set of experiments were run with reduced

training sets to train a regression model that predicts the 48M thickness.

6.3.3 Results

Every experiment was validated on four major sub-plates - medial/lateral femur

(MF/LF) and medial/lateral tibia (MT/LT).

Comparing the Regression Performance in Thickness Prediction: Fig. 6.3

shows the comparison of SVR-rbf (left column) and the LR (right column) for sub-

plate thickness values computed on 4D LOGISMOS segmentation results. We see

that both the methods predict the thickness of the femur sub-plates (MF & LF) with

similar accuracy. However, for the tibial sub-plates, the linear regression model is able

to better predict the thickness value at 48M with the best performance amongst all

eight experiments achieved for the MT plate prediction using linear regression which

had a R2 = 0.91 and slope almost equal to one. The remaining sets of experiments

used linear regression for the experiments.
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Prediction Accuracy of 4D versus 3D LOGISMOS Thickness using Linear

Regression: In this experiment, we studied the benefits of having contextual in-

formation by comparing the 4D LOGISMOS segmented sub-plate thickness with the

equivalent 3D thickness. The linear regression training used the BL to 36M thickness

values as training. Fig. 6.4 shows the regression accuracy of 4D (left column) versus

3D (right column) thickness. We see that the 4D based thickness prediction was able

to perform better for all the sub-plates. Along with the experiments conducted in

Chapter 4 where we showed the improvements on using 4D over 3D LOGISMOS, the

results shown here on prediction accuracy are convincing improvements that can be

attributed to providing more consistently accurate thickness values.

Effect of Reducing the Time-Points Used for Training: For all the previous

experiments irrespective of the regression method or the type of thickness used, the

training always had as inputs the thickness values from BL, 12M, 24M and 36M. In

this experiment, we attempt to deconstruct how much of an added benefit the time

points provide. All experiments in this section used 4D LOGISMOS based thickness

with linear regression. Fig. 6.5 shows the effect of using only the BL, 12M and 24M

thickness values for predicting the 48M on all four sub-plates. The prediction of

the medial regions were more adversely affected than the lateral regions. Further

reducing the number of time-points to two we study the effects of training using BL

and 12M (Fig. 6.6) or using BL and 24M (Fig. 6.7). Although both of these performed

far worse than training with more time-points, it was interesting to note that using

BL and 24M was markedly better than using BL and 12M for prediction. Overall

this experiment produced quite interesting trends in terms of understanding how the

prediction of 48M thickness is affected by each of the time-points. The results clearly

show that using all four time-points gave the best prediction. When the 36M was

dropped, the medial side predictions were more adversely affected while using only
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two time-points the information from BL and 24M was more useful in capturing the

thickness losses that occurred at 48M.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: Comparing the prediction accuracy of SVR-rbf (left) versus linear regres-
sion (right). The femur sub-plates had more or less the same performance while the
linear regression prediction the tibial sub-plate thickness with higher accuracy.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: Linear regression accuracy of 4D (left column) versus 3D (right column)
thickness. We see that the 4D based thickness prediction was able to perform better
for all the sub-plates.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Comparing the effect of using only the BL, 12M and 24M (right) thickness
values for predicting the 48M on all four sub-plates. The prediction of the medial
regions were more affected than the lateral regions in comparison with the fully trained
4D linear regression prediction shown on the left column.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Reduced time-points (BL and 12M) to study the effects of training are
shown in the right column. The fully trained 4D linear regression prediction is shown
on the left column for comparison.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.7: Reduced time-points (BL and 24M) to study the effects of training are
shown in the right column. The fully trained 4D linear regression prediction is shown
on the left column. Comparing with the Fig. 6.6, the information from BL and 24M
is more useful in capturing the 48M thickness.
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CHAPTER 7
CONCLUSIONS, FUTURE DIRECTIONS & CONTRIBUTIONS

7.1 Conclusions

In this thesis work we demonstrated the benefits of using automated LOGISMOS

segmentation for knee MRI to study patients with osteoarthritis. In Chapter 2, the

basic 3D LOGISMOS for knee MRI was explained. Further a hierarchical set of ran-

dom forest classifiers was designed to provide robust cartilage cost functions for the

LOGISMOS segmentation. The first stage of the classifier consisted of a neighbor-

hood approximation forests followed by a clustered random forest collecting features

along the geometric graph columns. Our experiments showed that the combination

of global and local contextual features from the hierarchical classifiers produced sta-

tistically significant improvements in segmentation accuracy in comparison with the

simple gradient based costs and the single stage random forest classifiers. Chapter

4 extended the 3D LOGISMOS segmentation to 4D LOGISMOS to simultaneously

segment multiple time points of patient follow up visits. With disease progression

several artifacts similar in intensity to the cartilage begin to appear in the later time

points of MRI volumes. By enforcing the inter-time point constraints as graph edges

between the 3D LOGISMOS graphs, the segmentation over the time points become

more consistently accurate. Given that the 3D LOGISMOS is already very accurate,

we were unable to show drastic differences between 3D and 4D over a limited set of

54 patients at baseline and 12Months. However we did demonstrate that the overall

consistency of the 4D segmentation accuracy improves when analyzing 399 patients

over 5 time points (baseline, 12 month, 24 month, 36 month and 48 month follow-up

scans) although no independent standards were available. With the assumption of a

linear deterioration in cartilage thickness the correlation coefficient R was computed

for 3D and 4D segmented patient datasets. The 4D segmentation results had a higher

number of patients thickness that showed a R value close to one. Although the as-
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sumption of linear thickness losses may not be wholly correct, for the experiment

it did demonstrate as a proof of concept the benefits of using 4D segmentation. A

different analysis approach with independent standards available for all patients at

every time-point will validate the benefits more accurately.

Although LOGISMOS 3D and 4D segmentation are very robust a few cases do

exist where interactive post segmentation correction was necessary. In Chapter 5,

we designed just-enough interaction editing to correct the segmentation inaccuracies.

Unlike previous methods, the designed algorithm is able to maintain global optimality

over the existing methods for multiple objects and surfaces. The user interaction

was used to change the costs functions in the underlying graph thereby ensuring

global optimality with each interaction. An additional benefit of this method was

avoiding topological errors that occur because of repeated surface corrections. The

graphical user interface designed for the JEI was built upon a highly modular multi-

platform design. 14 JEI corrected patients in 3D showed significant improvement over

the automated LOGISMOS segmentation. While using the 4D JEI for the same 14

patients allowed for simultaneous correction of baseline and 12 month segmentations.

The results were similar to the 3D JEI with the additional benefit of completing

the 4D JEI on an average of 22 min when the 3D JEI took 16 min. These JEI

corrected segmentations were used as training annotations for the hierarchical random

forest classifiers described in Chapter 2. The added benefit is that the resulting

classifier based segmentation would have higher accuracy and therefore require lesser

interaction. Using this feedback of JEI correction and automated segmentation, we

anticipate that the number of training examples can be expanded quickly providing

a larger annotated training dataset much faster.

Chapters 3, 6 were focused on developing automated quantitative algorithms.

Chapter 3 developed a fully automated sub-plate detection algorithm to identify the

most common load bearing regions of the cartilage that are likely to be affected by
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osteoarthritis. Several semi-automated algorithms for the sub-plate detection exist

in the literature. The developed method was fully automated requiring only the LO-

GISMOS segmented surfaces as inputs. These sub-regions helped identify locally the

losses in cartilage over the different time-points of the patient. Chapter 6 developed

spherical harmonics based point distribution model (SPHARM-PDM) to analyze the

femur bone shape changes between the progressing and non-progression osteoarthritis

population. Our proposed method was able to quantitatively analyze local regions of

the femur bone in 3D. Permutation tests between the two patient populations showed

statistically significant differences in the regions around the trochlear groove of the

bone confirming the hypothesis. From our experiments, the shape changes spread

spatially over time. For the left knees analyzed, significant changes were also found

in the femoral condyle which could be a factor in the cartilage losses with disease

progression.

Predicting the cartilage thickness is crucially important especially in clinical trial

to study the efficacy of the interventional drugs. We tested liner regression models

and support vector machine regression with radial basis function kernels for predicting

the thickness of the cartilage sub-plates at 48 month using thickness information from

the previous time-points. Our experiments found that using a linear regression model

provided better prediction accuracy than using support vector machine regression.

Our experiments compared the prediction accuracy when using 4D LOGISMOS versus

3D LOGISMOS segmented sub-plate thickness. The prediction accuracy of the using

the 4D LOGISMOS segmented thickness was higher compared to the 3D version

on the equivalent sub-plate regions. Further we experimented on the benefits of

using different time-point thickness for training the regression model. While training

only using the baseline, 12 month, 24 month thickness to predict the 48 month, we

found that the medial sub-plate prediction accuracy was more adversely affected.

Further when experimenting with using only baseline and 12 month or baseline and
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24 month thickness, the latter combination of thickness information predicted the

48 month thickness more accurately. Overall the best prediction in accuracy was

obtained using a liner regression model with sub plate thickness computed from 4D

LOGISMOS segmentation using all four previous time points (BL-36M) to predict

the 48 month thickness.

7.2 Limitations

Given the different algorithms used to perform the segmentation and quantitative

analysis throughout the thesis, it is important to highlight the limitations and the

stability of sub-steps in the different algorithms and their effect on the final results.

7.2.1 LOGISMOS Segmentation

Recall that the 3D LOGISMOS segmentation consisted of four major steps: Vol-

ume of interest detection (VOI), pre-segmentation, image re-sampling and multi-

object multi-surface graph segmentation. The VOI detection is followed by affine

fitting of the mean shape mesh. As long as the fitted mean shape is able to capture

the regions of the objects to be segmented fairly accurately, the subsequent steps

and the final segmentation are quite robust with respect to the the variations in VOI

bounds. However if the VOI failed, the subsequent steps could not be corrected.

The pre-segmentation captured the dark bone to bright cartilage gradient bound-

ary along the ELF search columns drawn on the fitted mean shape mesh. In order to

improve the robustness the inter-column arcs maximum allowed for a capture range

of 2.1 mm which accounted for the approximate initially fitted surface. Less that 5%

of all cases failed at the pre-segmentation step when the initial VOI bounds captured

the objects of interest reasonably accurately.

The gradient based costs functions used were quite robust to variations in the node

spacing along the ELF graph columns. However, for the classifier based method, the

node spacing was also inherently trained upon due to which the performance was
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sensitive to changes in the node spacing between the training and the testing sets.

For the 4D LOGISMOS an extra parameter of inter-time-point arcs needed to

be set to constrain the changes across the follow-up MRI’s temporally. From our

initial experiments, setting a very low value resulted in an over smoothing temporally

resulting in increased segmentation inaccuracy. However if it was set too high the

inter-time-point arcs had no effect and the results were similar to the individual 3D

segmentation at their respective time-points. The final inter-time-point arcs were set

at 0.6 mm.

7.2.2 Sub-plate Detection

The sub-plate detection algorithm automatically identified nomenclature compli-

ant regions of the cartilage in which thickness losses due to osteoarthritis were studied.

The central medial and lateral femur are computed as 60 % of the region from the

trochlear notch to the posterior most point on each of the respective condyles. To test

the stability of the sub-plate detection, a reduced 45% of the region was studied. The

experiment replicated the study in Table 2.5 where statistically significant improve-

ments in segmentation accuracy were demonstrated using the hierarchical random

forest classifiers as costs functions over gradient based costs. Table 7.2.2 reports

the cartilage surface position errors (w.r.t. independent standard, 108 patients) on

3D LOGISMOS segmented surfaces using hierarchical random forest classifiers and

gradient costs. The reported sub-plate errors were on 45% of the region. In these

45% sub-regions as well using learned classifier as cost function showed statistically

significant (paired t-test, p=0.05) improvements in segmentation accuracy.

7.2.3 Femoral Bone Shape Analysis

The bone shape analysis used the LOGISMOS segmented mesh surface which was

analyzed using SPHARM-PDM. The SPHARM-PDM algorithm is a parametric map-

ping of the mesh objects onto a sphere using harmonics. The uniform re-sampling
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Table 7.1: Cartilage border positioning errors (in mm)
for femoral sub-plates achieved by hierarchical classifier,
gradient cost and single stage RF classifier. This exper-
iment used the 45% sub-plate regions on the femoral
condyles to test the stability of the algorithm.

NAF+RF Gradient p-value
Femur signed -0.01±0.18 -0.31±0.24 � 0.001
Femur unsigned 0.55±0.11 0.69±0.13 � 0.001
cMF signed 0.04±0.70 -0.37±1.06 � 0.001
cMF unsigned 0.62±1.17 0.87±1.13 0.099
cLF signed -0.28±0.25 -0.56±0.39 � 0.001
cLF unsigned 0.43±0.14 0.70±0.22 � 0.001

of the sphere results in point-to-point correspondences between the two study pop-

ulations. Statistically significant local differences were obtained using permutation

tests. In Chapter 6, statistically significant local changes between the progressing

and non-progressing OA populations were demonstrated. The main regions of change

occurred around the trochlear notch region with the changes between the populations

gaining power and spreading spatially over time. The experiment used 79 progressors

(PROG) and 113 non-progressors (NPROG) to study the shape changes.

To test the stability of the algorithm, the earlier experimental data was divided

into two approximately equal sets. Set 1 consisted of 40/57 patients in the PROG/N-

PROG group respectively and the set 2 consisted of 39/56 patients. The resulting

groups were examined in the shape population viewer with patients (n=19 at BL,

n=21 at 12M, n=17 at 24M) removed due to sub-step failure. Figs. 7.1, 7.2 shows

the statistically significant differences between the two groups for left and right knees

of both sets. We see that for the first set the differences in population is similar to

the earlier experiment shown in Fig. 6.2. Although differences were found in set 2,

the changes were not as pronounced. This indicates the limitations of the method

in terms of the number of patients or – at the same time – the impact of random

selection of patients in the relatively small test groups. Although all patients were of
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KL2, the heterogeneity of KL grading could also be a factor in the differences between

the two sets.

Figure 7.1: Comparison of the PROG vs NPROG datasts in set 1. The localized
statistically significant regions shown are similar to the results obtained when using
the entire experimental datasets.

7.2.4 Regression Analysis

The major limitation in the regression analysis were the lack of independent stan-

dards. Although the combination of experiments in Chapter 4 shows that using 4D
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LOGISMOS based sub-plates are better at predicting 48M, the accuracy of predict-

ing the true change in thickness needs to be understood and that is only possible

with an available gold standard. Further it may be that using only the thickness for

predicting may not be sufficient and other textual and intensity features may help

improve the accuracy once we have an accepted gold standard for comparison.

7.3 Future Directions

There are several broad themes on which this work can be extended upon.

7.3.1 Machine Learning

Random forests have played a very important role in significantly improving the

cartilage cost functions in the LOGISMOS framework. However, there are several

other aspects of the study where machine learning can help. With advances in ar-

tificial intelligence community, a reinvented neural network called deep learning is

proving to be extremely adept. The random forests based costs functions could be

replaced by convolutional neural networks [37] and validated against the independent

standard.

7.3.2 LOGISMOS Graph Extension

The patients in the OAI cohort also have been scanned on several other pulse

sequences such as T2 mapping, and T1ρ. These sequences are good at identifying

changes in the collagen matrix but have poor spatial resolution. The 4D LOGISMOS

can be extended to 5D where every time point will have two sequences. The comple-

mentary set of information from them can be exploited along with the corresponding

images at several follow-up time-points to improve the segmentation accuracy in both

types of MRI sequences for all the time-points of the patient.

Most of this thesis focused on identifying surfaces of the bones and cartilages

of the femur and tibia to study thickness losses. However there are several other
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artifacts such as bone marrow lesions, synovial fluid leakage, meniscus extrusion, and

osteophytes which are all indicators of the disease. These artifacts do not have a

well-defined structure. The earlier works of Qi et al. [59] combining graph cuts with

graph search can be used to identify many of these structures if it was known before

hand that they appear in the given MR volume. However most of these artifacts

may not even exist in early stage osteoarthritis. The challenge will be to extend the

current graph techniques to catch these structures if and when the exist while still

working successfully as graph search to identify the surfaces when the artifacts do

not exist.

7.3.3 Just Enough Interaction

JEI is proven to be very useful for providing fast interactive corrections. However

one of the most time consuming steps of the work-flow is to scroll through the several

slices identifying the regions that need correction. JEI could have a learning based

step where the algorithm is trained to identify regions that may required editing. It

could be argued that if the learning based algorithm could identify the region then

that information might as well be incorporated into the cost function design of the

automated LOGISMOS. However this specialized learning might differ vastly from

the cost functions that are currently providing robust segmentation and may actually

worsen the accuracy of the segmentation given the highly specific type of artifact the

algorithm would be designed to detect.

Real-time reporting and analysis can be incorporated into the JEI viewer providing

quantitative metrics. With every JEI correction these changes can be reflected in real

time on the thickness analysis. This feature will prove to be especially useful for

4D JEI where the reporting can graphically show the progression of thickness losses

quantitatively. Further smart 3D interactions can be designed for large 3D capable

visualization wall where the main challenge would be to move beyond clicking nudge

points on a few slices in 2D to providing a truly 3D information that would help
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identify and correct the problematic regions quickly.

7.3.4 Analysis

There are several avenues of exploration for analysis. Adding more textural and

intensity-based features to the thickness prediction can be explored to understand if

it would improve prediction accuracy. Further, a subset of OAI datasets also have

bio-chemical markers available at multiple time-points. Combining this information

in a meaningful manner may provide more information on the prediction as well as

the progression of the disease. Although linear regression provided superior accuracy

to support vector machine based regression, other more powerful regression models

could be employed to improve the accuracy.

In order to understand the different parameters that trigger the onset of os-

teoarthritis unsupervised deep learning could be used. After training the network

to predict KL grades, the intermediate layer representations can be studied to under-

stand what structures the network utilized to identify differences between the different

osteoarthritis stages.

We already covered femoral bone shape change in this work. One immediate

extension of the shape analysis work will be to study the tibial bone shape as well and

gain insights on how it changes with disease progression. Only a small subset of the

entire cohort was used in this thesis work. Running the segmentation and analysis on

the entire cohort would be the next step. More meaningful clinical prospective studies

can be undertaken applying our quantitative analysis tools to confirm the diagnosis

and further our understanding of the efficacy of the developed tools. JEI editing can

be done on more patient datasets providing a larger set of highly accurate independent

standard which is very useful for validating the existing techniques especially to better

understand the true benefits of 4D.
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7.4 Contributions

The following highlights the contributions of this thesis:

1. Designed a new hierarchical random forest based classifier combining the neigh-

borhood approximation forests with the clustered random forest classifier on

graph nodes whose probability output was used as cartilage cost functions in a

LOGISMOS framework – as a result, significantly improving the segmentation

accuracy over existing methods.

2. Extended the 3D LOGISMOS to multiple time-point simultaneous segmentation

(4D) resulting in improved segmentation accuracy.

3. Designed 3D just-enough interaction for knee MRI using a modular graphical

user interface framework for 3D visualization and editing.

4. Extended the 3D just-enough interaction capabilities to 4D allowing simulta-

neous visualization and interactive editing of multiple time point images and

results.

5. Developed a fully automated pipeline combining LOGISMOS with SPHARM-

PDM to analyze femoral bone shape to quantify statistically significant local

shape differences between two study populations.

6. Designed an automated nomenclature compliant sub-plate detection algorithm

to analyze thickness losses in the load bearing regions of the knee.

7. Designed a regression model to accurately predict the cartilage thickness of vari-

ous sub-plates at a particular time-point using thickness information of previous

time-points as training.
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Figure 7.2: Comparison of PROG vs NPROG datasets in set 2. This dataset shows
that the results of the shape analysis are dependent on the number of patients. It also
highlights the heterogeneity of the KL grading system with different results between
the patients of set 1 and set 2 although both start at KL 2.
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